
1	(a) Co	ppe	$er(II)$ chloride contains copper ions, Cu^{2+} , and chloride ions, CI .	
	(i) What is the formula of this copper chloride?			
		Pu	t a cross (図) in the box next to your answer.	(4)
	\boxtimes	A	CuCl	(1)
	×	В	Cu ₂ Cl	
	X	C	CuCl ₂	
	×	D	Cu ₂ Cl ₂	
	(ii)		a reaction 0.64 g copper are reacted to produce copper chloride. e theoretical yield of this reaction is 1.35 g copper chloride.	
		Ex	plain what is meant by theoretical yield .	(2)

(b) Bromine reacts with hot iron wool to produce solid iron(III) bromide, $FeBr_3$.

(i) Write the balanced equation for the reaction between iron and bromine gas. Include state symbols.	(3)	
(ii) Calculate the relative formula mass of iron(III) bromide, FeBr ₃ . (Relative atomic masses: Fe = 56, Br = 80)	(1)	
relative formula mass =		
(iii) Iron also reacts with iodine to form iron(II) iodide, Fel ₂ .		
Calculate the percentage by mass of iron in iron(II) iodide. (Relative formula mass $Fel_2 = 310$)	(2)	
percentage by mass of iron =		%
(iv) Hydrogen peroxide reacts with some iron compounds. The molecular formula of hydrogen peroxide is $\rm H_2O_2$.		
Give the empirical formula of hydrogen peroxide.	(1)	

2		Magnesium and calcium are in group 2 of the periodic table. They are less reactive than the metals in group 1.				
	(a)	Calcium reacts with water to form calcium hydroxide, Ca(OH) ₂ , and hydrogen, H ₂ .				
		$Ca(s) + 2H_2O(I) \rightarrow Ca(OH)_2(s) + H_2(g)$				
		Describe what would be seen when a piece of calcium is dropped into a container of water.	(2)			
	(b)	Magnesium reacts very slowly with cold water but it reacts faster with steam, $\rm H_2O$, and forms magnesium oxide, MgO, and hydrogen.				
		Write the balanced equation for the reaction between magnesium and steam.	(2)			
	(c)	The electronic configurations of magnesium and calcium are magnesium 2.8.2 calcium 2.8.8.2				
		When magnesium and calcium react with water they form positive ions.				
		Suggest an explanation, in terms of their electronic configurations, why calcium is more reactive than magnesium.				
			(2)			

(d) A sample of calcium bromide contains 0.2 g calci	um and 0.8 g bromine by mass.	
Calculate the empirical formula of calcium bromi	de.	
(relative atomic masses: Ca = 40, Br = 80)		(2)
		(3)
	empirical formula =	
	(Total for Question 2 = 9 m	arks)

3 Figure 13 shows a model of how particles are arranged in a solid.

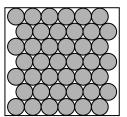


Figure 13

(2)

(a) (i)	State two ways in which this model fails to accurately represent a crystal of
	sodium chloride.

1		
2		
(ii)	Magnesium oxide has a melting point of 2852 °C.	
	Explain why magnesium oxide has such a high melting point.	(3)
		(3)

(b) (i)	Carbon dioxide can be formed by the reaction of calcium carbonate, ${\rm CaCO_3}$, with dilute hydrochloric acid.	
	Write the balanced equation for this reaction.	(3)
(ii)	The thermal decomposition of copper carbonate forms copper oxide and carbon dioxide.	
	$CuCO_3(s) \rightarrow CuO(s) + CO_2(g)$	
	15.0 g of pure copper carbonate is decomposed completely.	
	Calculate the mass of solid produced.	
	(relative atomic masses: $C = 12.0$; $O = 16.0$; $Cu = 63.5$)	
	Give your answer to two significant figures.	(2)
	mass of solid =	<u>(</u>

1	ر)	Magnesium	reacts with	water in the	form of st	eam as showr	in the equat	tion
l	C)	Magnesium	reacts with	water in the	101111 01 50	eaiii as siiowi	i iii tile equa	lion.

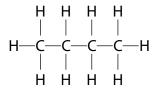
$$\mathrm{Mg} \ + \ 2\mathrm{H_2O} \ \rightarrow \ \mathrm{Mg(OH)}_2 + \ \mathrm{H_2}$$

2.4g of magnesium reacts with sufficient steam for a complete reaction to form 5.8g of magnesium hydroxide and 0.2g of hydrogen.

Show, by calculation, that the law of conservation of mass applies to this reaction.

(relative atomic masses:
$$H = 1.0$$
, $O = 16$, $Mg = 24$)

(3)


(Total for Question 3 = 13 marks)

 (a) Chlorine reacts with potassium bromide in solution to form brom potassium chloride. 	nine and	
(i) What type of reaction is taking place?		
Put a cross (\boxtimes) in the box next to your answer.		(1)
■ A displacement		(1)
■ B distillation		
■ D precipitation		
(ii) State the colour of the mixture at the end of the reaction.		(1)
A B C D	table? 5 6 7 0	
Put a cross (⋈) in the box next to your answer. □ A □ B □ C □ D		(1)

(2)
(1)
(2)
0/
·ks)

5 Alkanes and alkenes are hydrocarbons.

The structure of a molecule of butane is shown.

(a) Which of the following is the empirical formula for butane?

(1)

- A CH
- B CH,
- \square **C** C_2H_5
- \square **D** C_4H_{10}
- (b) Figure 5 shows some information about the alkenes, ethene and propene.

Complete the table. The structure of propene must show all covalent bonds.

(2)

name of alkene	molecular formula	structure
ethene		H H H
propene	C_3H_6	

Figure 5

		$C_4H_8 + H_2O \rightarrow C_4H_9OH$	
(i)	Cal 1.4	culate the maximum mass of butanol, C_4H_9OH , that can be produced when kg of butene, C_4H_8 , reacts with excess steam.	
	(rel	lative atomic masses: $H = 1$, $C = 12$, $O = 16$ ative molecular mass of butene, $C_4H_8 = 56$)	(3)
(ii)	Wh A B C D	mass of butanol = nat type of reaction takes place between butene and steam? addition dehydration neutralisation substitution	kg

(c) Butene reacts with steam to produce butanol.

(Total for Question 5 = 9 marks)		
US	sing the results, comment on the structures of the hydrocarbons X , Y and Z .	(2)
Z	J	
Y	orange mixture becomes colourless	
X	orange mixture becomes colourless	
Th	ne results are:	
wa	ater. Bromine water is orange coloured.	